Plan for today:

- · lim sup & lim inf
- · Continuous functions
- · Open cover examples
- · Convex sets

· lim sup & lim inf

Def The limit superior of Xn is lim sup Xn := lim sup {Xn: n > m}.

The limit inferior is liminf Xn := lim inf (Xn: n>m).

One way to interpret this definition is to define a sequence: $y_m = \sup\{x_n : n > m\}$, the sup of the tail sequence $x_{n > m}$. Then $\lim_{n\to\infty} \sup_{n\to\infty} x_n = \lim_{n\to\infty} y_n$. So $\lim_{n\to\infty} \sup_{n\to\infty} x_n$ is just the limit of the supremum of the tail of the sequence as we move further into the tails.

E.g. | Xn = 1.

What's $\{X_n: n > m\}$? $\{\frac{1}{m}, \frac{1}{m+1}, \dots\}$

what's $\sup \{x_n : n > m\}$? $x_m = \frac{1}{m}$

what's $\limsup_{m \to \infty} \{x_n : n > m\}$? = $\lim_{m \to \infty} x_m = \lim_{m \to \infty} \frac{1}{m} = 0$

E.g. It looks like lim xn & lim sup xn are quite similar, but they re actually different. Take, for example, $x_n = (-1)^n$

We know xn doesn't converge. But ym := sup{xn: n=m} actually behaves nicely: Ym = 1 4 m! (If you're not convinced, write out a couple terms of ym.)

So $\limsup_{n\to\infty} x_n = \lim_{n\to\infty} y_n = 1$.

Yiqi Lin 6170 Section #2 09/10/21

· Continuous functions

Proposition 21. Let f and g be real-valued functions that are continuous at x_0 , and let $k \in \mathbb{R}$. Then the following functions are all continuous at x_0 : (i) |f|; (ii) kf; (iii) f + g; (iv) fg; (v) f/g, if $g(x_0) \neq 0$.

f+9:

$$|f(x) + g(x) - f(x_0) - g(x_0)| \le |f(x) - f(x_0)| + |g(x) - g(x_0)|$$

 $\le \frac{\varepsilon}{z} + \frac{\varepsilon}{z} = \varepsilon$

So we have \$ \$ 70, \(\frac{1}{2} \) \(\frac{1}

=)
$$|f(x)+g(x)-f(x_0)-g(x_0)| < \varepsilon$$
.

 \underline{fg} : This one is very similar to the proof for "If $a_n \rightarrow a$, $b_n \rightarrow b$, then $a_n b_n \rightarrow ab$." See last Friday's (9/3) section notes.

f & g are continuous at Xo:

$$\forall \xi' \neq 0, \exists \delta_1 \leq t. |x-x_0| < \delta_1 = 0 |f(x) - f(x_0)| < \xi'$$

 $\delta_2 |x-x_0| < \delta_2 = 0 |g(x) - g(x_0)| < \xi'$

Take $\delta = \min\{\delta_1, \delta_2\}$.

$$\frac{\text{WTS}}{\text{H}} : \forall \xi \neq 0, \exists \xi \in [x - x_0] < \xi = |f(x)g(x) - f(x_0)g(x_0)| < \xi$$

$$|f(x)g(x) - f(x)g(x_0) + f(x)g(x_0) - f(x_0)g(x_0)|$$

$$\leq |f(x)g(x) - f(x)g(x_0)| + |f(x)g(x_0) - f(x_0)g(x_0)|$$

$$= |f(x)| |g(x) - g(x_0)| + |g(x_0)| |f(x) - f(x_0)|$$

Like last time, we need to find bounds for |f(x)| and $|g(x_0)|$. How do we know |f(x)| is bounded for $x \le t \cdot |x - x_0| < \delta$? By continuity of f! We have $|f(x) - f(x_0)| < \xi' + x \le t \cdot |x - x_0| < \delta$. So |f(x)| = M exists. We can choose M > 0 s.t. $|g(x_0)| < M$.

(You can also write |f(x)| < |f(x0)| + &', where |f(x0)| is just a constant

So we have $\forall \ \xi \neq 0$, take $\xi' = \frac{\xi}{zM}$, then $\exists \ \delta \ s.t. \ |x-x_0| < \delta$ $= |f(x)g(x) - f(x_0)g(x_0)| < \xi.$

idea of proof: Show if g is cont. at Xo. Then $\frac{1}{g}$ is cont. at Xo. $(g(x_0) \neq 0)$. Then immediately conclude $f(\frac{1}{g})$ is cont. at Xo since both f & $(\frac{1}{g})$ are cont. at Xo. Or you can prove this directly using S-E def.

· Open covers & topological compactness.

- Def An open cover $\{U_n\}$ for a set $A \subseteq \mathbb{R}^k$ is a collection of open sets U_n whose union contains $A: A \subseteq \bigcup U_n$
- [E.g.] Consider $A = \mathbb{R}^1$, the real line. Then one open cover would be $\left\{ U_n = (-n, n) \right\}_{n \in \mathbb{N}}$ $\sin u = (-1, 1) \cup (-2, 2) \cup (-3, 3) \cup \cdots \supseteq \mathbb{R}$

Def Topological compactness: A is compact if every open cover of A has a finite subcover.

Q: Is IR compact? No! Can't find a finite subcover for Un=(-n,n)

Def Sequentially compactness: A is sequentially compact if every sequence has a convergent subsequence converging to a pt in A.

Topological compactness <=>> sequential compactness.

And in Euclidean space, we have a nice Thm:

- Thm Set A C IR is sequentially compact iff it's closed & bounded
- E.9. A = [-123, 321]Is $\{Un = (-n, n)\}_n$ an open cover? Yes

 Can you find a finite subcover? $\{Un\}_{n=1}^{322}$!

E.g. A = (0, 1] Find an open cover of A that doesn't have a finite subcover.

Take $U_n = (\frac{1}{n}, 2)$, $n = 1, 2, \cdots$. Then $\bigcup_{n=1}^{\infty} U_n = (1, 2) \cup (\frac{1}{2}, 2) \cup \cdots$ contains A. But there's no finite subcover!

$$\frac{1}{n} = \frac{1}{106}$$

$$\frac{1}{0}$$

$$\frac{1}{2}$$

Elements in (0,1] not covered

· Convex sets

- Def The convex hull CH(X) of a set $X \subseteq \mathbb{R}^k$ is the smallest convex set containing X.
- Ex. Prove that the intersection of all convex sets containing X (denoted S) is CH(x).

If we want to show S = CH(x), we need to show $S \subseteq CH(x)$ and $CH(x) \subseteq S$.

Since CH(x) is one of those convex sets that contain X, we have $S \subseteq CH(x)$.

Since S is a convex set containing X, and (H(x)) is the smallest convex set containing X by definition, we have $CH(x) \subseteq S$.

=) S = CH(x).

Proposition 3. Let $X \subseteq R^n$ be convex, $\{\alpha_1, \ldots, \alpha_m\}$ a set of $m \ge 1$ real numbers $\in [0,1]$ such that $\sum_{i=1}^m \alpha_i = 1$, and $\{x_1, \ldots, x_m\} \subset X$. Then $\sum_{i=1}^m \alpha_i x_i \in X$.

Proof of this is by induction:

Base case: m = 2

Take x1, x2 EX, & E[0,1]. Then &x1+(1-2)x2 EX since X is convex.

Induction Step:

Suppose $\sum_{i=1}^{k} a_i x_i \in X$ holds for m=k+1.

We have $y = \sum_{i=1}^{k+1} \alpha_i x_i$, $\sum_{i=1}^{k+1} \alpha_i = 1$, and we WTS $y \in X$.

$$= \underbrace{\sum_{i=1}^{k} d_i X_i}_{l=1} + d_{k+1} X_{k+1} \rightarrow Looks like a convex combo of$$

$$= \underbrace{(I-d_{k+1})}_{i=1} \underbrace{\sum_{i=1}^{k} \frac{d_i}{(I-d_{k+1})} X_i}_{l=1} + d_{k+1} X_{k+1}$$

$$+ d_{k+1} X_{k+1}$$

$$+ d_{k+1} X_{k+1}$$

$$+ d_{k+1} X_{k+1} = 1 \Rightarrow \underbrace{\sum_{i=1}^{k} d_i}_{l=1} = 1 - d_{k+1}$$

$$+ d_{k+1} X_{k+1} = 1 \Rightarrow \underbrace{\sum_{i=1}^{k} d_i}_{l=1} = 1 - d_{k+1}$$

And the induction hypothesis gives $\underset{i=1}{\overset{k}{\leq}} \frac{d_i}{(1-d_{k+1})} x_i \in X$.

Then h t we end up w is a convex combo of 2 elements $\in X$ $= \sum_{i=1}^{k+1} a_i x_i \in X.$