
1. (5pts) Let f : R ! R and g : R ! R.
Let h = f ⇤ g, i.e., h(x) = f(x) ⇤ g(x) for all x 2 R.
If f and g are continuous, prove that h is continuous.

Note: Prove it directly using the definition of continuity. You
may not simply cite the proposition in the notes that states this result.
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2. (5pts) Let X ⇢ Rk be compact and suppose that f : X ! R is continuous.

Prove that f(X) is a compact set in R.
Note: Recall that f(X) = {f(x)|x 2 X}.

We use Heine-Borel/Bolzano-Weierstrass, which says a set is

compact i↵ it’s closed and bounded.

You can directly use the extreme value theorem to show that f(X) is
bounded because it attains max and min.
If you want to show this formally, suppose f(X) is not bounded. Then
8n 2 N, 9xn 2 X s.t. |f(xn)| > n. Take the sequence xn. Since X
is compact (hence closed and bounded), xn has a convergent subsequence
xnk ! x 2 X (by Bolzano Weierstrass and closedness of X). By sequential
continuity of f , f(xnk) ! f(x). But for all nk 2 N, |f(xnk)| > nk =)
f(nnk) ! 1. Contradiction. So f(X) is bounded.

To show f(X) is closed, take any convergent sequence yn 2 f(X). Then
yn ! y 2 R. We need to show this limit point y 2 f(X).
For each yn 2 f(X), there exists a corresponding xn 2 X. Since X is
closed and bounded, xn has a convergent subsequence xnk ! x 2 X. By
sequential continuity of f , f(xnk) = ynk ! f(x) 2 f(X). But lim ynk =
lim yn =) y = f(x) 2 f(X). Hence f(X) is closed.

Finally, closedness and boundedness of f(X) give us f(X) is compact.
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3. (5pts) Suppose that f : Rk ! R is convex.

Let ↵1, . . . ,↵n 2 [0, 1] be such that
Pn

i=1 ↵i = 1.

Let x1, . . . , xn 2 Rk.

Prove that f(
Pn

i=1 ↵ixi) 
Pn

i=1 ↵if(xi).

Note: This is known as Jensen’s Inequality.

Friendly reminder : f is convex if f(↵x+(1�↵)y)  ↵f(x)+ (1�↵)f(y)
for all ↵ 2 [0, 1] and x, y 2 Rk.

We prove this by induction.
Base case: n = 2 is taken care of by the definition of the convexity of f .

Induction step: suppose f(
Pn

i=1 ↵ixi) 
Pn

i=1 ↵if(xi),
Pn

i=1 ↵i = 1
holds for n = m > 2.
Consider n = m+ 1.

f(
m+1X

i=1

↵ixi) = f(
mX

i=1

↵ixi + ↵m+1xm+1)

= f

 
(1� ↵m+1)

mX

i=1

↵i

1� ↵m+1
xi + ↵m+1xm+1

!

 (1� ↵m+1)f(
mX

i=1

↵i

1� ↵m+1
xi) + ↵m+1f(xm+1) (1)

 (1� ↵m+1)
mX

i=1

↵i

1� ↵m+1
f(xi) + ↵m+1f(xm+1) (2)

=
m+1X

i=1

↵if(xi)

where (1) follows from f is convex, Rk is convex and module 3 proposition
3; (2) follows from the induction hypothesis for n = m.
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4. (5pts) Suppose f : R ! R and g : R ! R are convex. Let h ⌘ max{f, g},
i.e., h(x) = max{f(x), g(x)} for all x 2 R. Prove that h is convex.

Convexity of f and g gives: for all x and y 2 R and ↵ 2 [0, 1],

f(↵x+ (1� ↵)y)  ↵f(x) + (1� ↵)f(y)

g(↵x+ (1� ↵)y)  ↵g(x) + (1� ↵)g(y)

It follows:

max{f(↵x+ (1� ↵)y), g(↵x+ (1� ↵)y)}
 max{↵f(x) + (1� ↵)f(y),↵g(x) + (1� ↵)g(y)}

 max
n
↵max{f(x), g(x)}+ (1� ↵)max{f(y), g(y)},↵max{f(x), g(x)}+ (1� ↵)max{f(y), g(y)}

o

= ↵max{f(x), g(x)}+ (1� ↵)max{f(y), g(y)}

Hence h = max{f, g} is convex.
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5. (Extra Credit: 2 pts) Prove that f(x) = x0.5 is continuous on [0,1).

Hint 1 : When showing continuity at x0 2 [0,1), treat the cases where
x0 = 0 and x0 > 0 separately.

Hint 2 : Note that x� x0 = (x0.5 � x0.5
0 )(x0.5 + x0.5

0 ).

Case 1: x0 = 0
For all ✏ > 0, 9� = ✏2 s.t. |x� 0| < � =) |x0.5 � 00.5| = x0.5 < �0.5 = ✏.
Hence f(x) is continuous at x0 = 0.

Case 2: x0 > 0
For all ✏ > 0, 9� = ✏ · (x0.5

0 ) such that
|x� x0| < � =)

|x0.5 � x0.5
0 | = |x� x0|

|x0.5 + x0.5
0 |

<
�

x0.5 + x0.5
0

= ✏
x0.5
0

x0.5 + x0.5
0

< ✏

Hence f is continuous on [0,1).
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