Def A correspondence Φ: X = Y is

who if $\forall x n \in X$ s.t. $x_n \to x \in X$ and $\forall y_n \in \Phi(x_n)$ s.t. $y_n \to y \in Y$, we have $y \in \Phi(x)$ the if $\forall x n \in X$ s.t. $x_n \to x \in X$ and $\forall y \in \Phi(x)$, $\exists y_n \in \Phi(x_n)$ s.t. $y_n \to y$.

E.g. Consider Φ: R+ => R++

$$\Phi(x) = \begin{cases}
\{1-x\}, & x \in [0,1) \\
[1,2], & x \in [1,2] \\
\{\frac{3}{2}\}, & x \in (2,3] \cup [4, \infty) \\
\{y: -x + \frac{9}{2} \le y \le x - \frac{3}{2}\}, & x \in (3,4)
\end{cases}$$

At x=1, take $x_n = 1-\frac{1}{n}$,

- $y_n = \frac{1}{h} \in \Phi(x_n)$, $y_n \rightarrow y = 0 \notin \Phi(i) = > not who$
- Take any $y \in \Phi(1)$. Say y=1. Does \exists seq $y_n \in \Phi(x_n)$ that converges to y=1? No because \forall $y_n \in \Phi(x_n)$, $y_n \to 0$. \Rightarrow not that

At x=2, take any $x_n \rightarrow x$ and $y_n \in \varphi(x_n)$ s.t. $y_n \rightarrow y \in \mathbb{R}_{++}$. For any $\varepsilon \rightarrow 0 \exists N \ s.t. \ n \rightarrow N \Rightarrow |x_n - x| < \varepsilon \ and \ |y_n - y| < \varepsilon. \ Pick <math>\varepsilon = 1$. Then $x_n \in (1,3)$ & $y_n \in [1,2] \cup \{\frac{3}{2}\} \ \forall \ n \rightarrow N \Rightarrow y \in [1,2] \cup \{\frac{3}{2}\} = [1,2] = \varphi(2)$ union of finitely many closed sets is closed.

The idea here is that the set of image at some ϵ -nbh of x=2 is closed. So any convergent seq in that set converges to a pt in that set.

Try to formally prove the rest as an exercise.

Thm Let $f: X \times \Theta \to R$ be a func, $\phi: \Theta \rightrightarrows X$ a correspondence.

Consider $\max f(z, \theta)$. $z \in \varphi(\theta)$ "policy func" if single-valued

Let $\sigma: \Theta \rightrightarrows X$ defined as $\sigma(\Theta) \equiv \arg\max_{z \in \Phi(\Theta)} f(z,\Theta)$, and $f^*: \Theta \to \mathbb{R}$ be defined as $f^*(\Theta) \equiv \sup_{z \in \Phi(\Theta)} f(z,\Theta) : z \in \Phi(\Theta)$.

If we assume:

- (T) X is closed.
- (2) f is cont. in (7,0)
- (3) Φ: (4) => X is cont., nonempty-valued and locally bounded.

 Shence both who & the.

Then we have :

- 2 f*: ⊕ → R is a cont. func.

Let's walk through the proof for continuity of f^* & uhc of σ again. To show f^* is cont., WTs: $\forall \Theta_n \rightarrow \Theta \in \Theta$, $\lim f^*(\Theta_n) = f^*(\Theta)$. First we show $f^*(\Theta) \geqslant \lim f^*(\Theta_n)$ by using Φ is locally bounded & uhc.

Take any seq $\Theta_n \rightarrow \Theta \in \Theta$ and $\Xi_n \in \sigma(\Theta_n) \subseteq \varphi(\Theta_n)$ (σ is nonempty To use who of φ , we need a convergent seq in $\varphi(\Theta_n)$.

How do we find such seq? Use local boundedness of $\varphi \& B-W!$ φ is locally bounded $\Rightarrow \exists \ \xi \rightarrow 0$ and bounded set $B \subset X \ s.t. \| \theta' - \theta \| < \xi$ $\Rightarrow \varphi(\Theta') \subseteq B \Rightarrow \sigma(\Theta') \subseteq \varphi(\Theta') \subseteq B \ so for this \ \xi, \ \exists \ N \ s.t. \ n \rightarrow N$ $\Rightarrow \| \Theta_n - \Theta \| < \xi \ \Rightarrow \ Z_n \in \sigma(\Theta_n) \subseteq B \ \Rightarrow \ Z_n \ is bounded.$

B-W tells us 3 subseq $Z_{n_k} \in \sigma(\Theta_{n_k}) \subseteq \Phi(\Theta_{n_k})$ s.t. $Z_{n_k} \Rightarrow Z \in X$. Let's not skip notation here (: (X is closed)) But ϕ who => $Z_{n_k} \rightarrow Z \in \phi(\Theta)$ Note Θ_{n_k} is a subseq of Θ_n and $\rightarrow \Theta$.

So
$$f^*(\theta) \ge f(z,\theta) = \lim_{k \to \infty} f(z_{n_k}, \theta_{n_k}) = \lim_{k \to \infty} f^*(\theta_{n_k})$$

by def of f^* by cont. by $z_{n_k} \in \sigma(\theta_{n_k})$
and $z \in \phi(\theta)$ of f and $f^*(\theta) = f(z,\theta)$ s.t. $z \in \sigma(\theta)$

Next we show $f^*(\theta) \leq \lim_{n \to \infty} f^*(\theta_n)$ by using the of ϕ .

Take any $Z' \in \sigma(\Theta) \subseteq \Phi(\Theta)$. By the of Φ , $\forall \Theta_n \rightarrow \Theta \in \Theta$, $\exists Z'_n \in \Phi(Q_n)$ s.t. $Z'_n \rightarrow Z$. Note that Z'_n is in $\Phi(\Theta_n)$, not necessarily $\sigma(\Theta_n)$.

$$\Rightarrow$$
 $f^*(\Theta_n) > f(\xi'_n, \Theta_n) \forall n.$

=)
$$\lim_{n \to \infty} f^*(\Theta_n) \ge \lim_{n \to \infty} f(Z'_n, \Theta_n) = f(Z'_n, \Theta) = f^*(\Theta)$$

by cont by $Z' \in \sigma(\Theta)$
of f

$$=) \lim_{n \to \infty} f^*(\theta_n) = f^*(\theta)$$

=) f^* is cont.

Now let's show o is uhc.

 $\forall \Theta_n \Rightarrow \Theta \in \Theta$ and $\exists n \in \sigma(\Theta_n)$ s.t. $\exists n \Rightarrow \exists \in X$. WTS $\exists \in \sigma(\Theta)$.

But
$$\lim_{n \to \infty} f(z_n, \theta_n) = \lim_{n \to \infty} f^*(\theta_n) = f(z, \theta) = \sum_{n \to \infty} z \in \sigma(\theta_n)$$
by def of f^*
by cont.
by cont of f^*

=) o is who.

Question: Is o the? Not necessarily!

Take $\Theta = X = [0,1]$ (closed). $F: X \times \Theta \rightrightarrows \mathbb{R}$ to be $F(X,\Theta) = X\Theta$ (cont.) Suppose $\phi: \Theta \rightrightarrows X$ is $\phi(\theta) = [0,1] \forall \Theta$ (constant corresp. and hence both which their good exercise to show). Obvious to see \$\phi\$ is nonempty & locally bounded.

So the thm of maximum applies.

For any
$$\theta$$
, $\sigma(\theta) = \arg\max_{\mathbf{x} \in \Phi(\theta)} \mathbf{x} \theta$

$$= \arg\max_{\mathbf{x} \in [0,1]} \mathbf{x} \theta$$

$$= \begin{cases} [0,1] & \text{if } \theta = 0 \\ 1 & \text{if } \theta = 0 \end{cases}$$

Not the. Take $\Theta_n = \frac{1}{n} \cdot \Theta_n \rightarrow \Theta = 0$ and $y = 0 \in \sigma(0)$. $\forall y_n \in \sigma(\Theta_n)$, $y_n = 1$ (since $\Theta_n \rightarrow 0 \ \forall n$). So no $y_n \in \sigma(\Theta_n)$ converges to y = 0.