Clarification on HW6, Ex. 5.

Proposition 15. A singleton-valued correspondence that is locally bounded is upper semi-continuous if and only if it is lower semi-continuous if and only if the function is continuous.

You need to show if ϕ is singleton-valued & locally bounded, then "unc is equivalent to the" iff " ϕ is associated w/ a cont. func."

Note that Prop 13. (which you'll prove in Ex.4) already tells you if "\$\phi\$ is singleton-valued" then "lhc (=) association w/ a cont f."

Proposition 13. A singleton-valued correspondence $\phi: X \rightrightarrows Y$ is lower semi-continuous if and only if it is associated with a continuous function f. If it is associated with a continuous f, then it is upper semi-continuous.

What's left is to show "uhc $\zeta=7$ association w/a cont f." using the additional assumption that ϕ is locally bounded.

What we didn't finish last time ...

Thm Let $f: X \times \Theta \to \mathbb{R}$ be a func, $\phi: \Theta \rightrightarrows X$ a correspondence.

Consider $\max_{z \in \Phi(\theta)} f(z, \theta)$.

Let $\sigma: \Theta \rightrightarrows X$ defined as $\sigma(\Theta) \equiv \arg\max_{z \in \Phi(\Theta)} f(z,\Theta)$, and $f^*: \Theta \to \mathbb{R}$ be defined as $f^*(\Theta) \equiv \sup_{z \in \Phi(\Theta)} f(z,\Theta) : z \in \Phi(\Theta)$.

If we assume:

- (T) X is closed.
- (2) f is cont. in (7,0)
- 3 Φ: ⊕ 3 X is cont., nonempty-valued and locally bounded.

I hence both who & thc.

Then we have :

(1) σ: (4) => X is a nonempty-valued, who and locally bounded corresp.

2 f*: ⊕ → R is a cont. func.

Question: Is o the? Not necessarily!

Take $\Theta = X = [0,1]$ (closed). $f: X \times \Theta \to \mathbb{R}$ to be $f(X, \Theta) = X\Theta$ (cont.) Suppose $\phi: \Theta \rightrightarrows X$ is $\phi(\Theta) = [0,1] \forall \Theta$ (constant corresp. and hence both which which is good exercise to show). Obvious to see ϕ is nonempty & locally bounded.

So the thm of maximum applies.

For any
$$\theta$$
, $\sigma(\theta) = \arg\max_{\mathbf{x} \in \Phi(\theta)} \mathbf{x} \theta$

$$= \arg\max_{\mathbf{x} \in [0,1]} \mathbf{x} \theta = \begin{cases} [0,1] & \text{if } \theta = 0 \\ 1 & \text{if } \theta > 0. \end{cases}$$

Not the. Take $\Theta_n = \frac{1}{n}$, $\Theta_n \rightarrow \Theta = 0$ and $y = 0 \in \sigma(0)$. $\forall y_n \in \sigma(\Theta_n)$, $y_n = 1$ (since $\Theta_n \rightarrow 0 \ \forall n$). So no $y_n \in \sigma(\Theta_n)$ converges to y = 0.

Prop Let $f: X \times \Theta \to \mathbb{R}$ & $\Phi: \Theta \rightrightarrows X$ satisfy the assumptions in Berge's Thm. If we also assume f is quasi-concave in X & Φ is convex-valued, then the solution (orrespondence $\sigma: \Theta \rightrightarrows X$ is convex valued. If f is strictly quasi-concave then σ is singleton-valued.

<u>Proof</u>: Fix any $\Theta \in \Theta$, $f(x,\Theta)$ is quasi-concave on $X \leftarrow \{x \in X : f(x,\Theta) > r\}$ is convex $\forall r \in \mathbb{R}$ (by module 3, Ex.8)

In particular, $A := \{x \in X : f(x, \theta) > \max_{z \in \Phi(\theta)} f(z, \theta)\}$ is convex.

Since $\phi(\theta) = \{x \in X : x \in \phi(\theta)\}\$ is convex, $\phi(\theta) \cap A$ is convex.

But $\phi(\theta) \cap A = \left\{ x \in \phi(\theta) : f(x,\theta) = \max_{z \in \phi(\theta)} f(z,\theta) \right\} = \delta(\theta)$.

Hence σ is convex-valued. If in addition, f is strictly quasiconcave, but $\exists x_1, x_2 \in \sigma(\Theta)$ s.t. $x_1 \neq x_2$. Then take any $d \in [0,1]$. $dx_1 + (1-d)x_2 \in \sigma(\Theta)$.

But $f(\alpha x_1 + (1-\alpha)x_2, \theta) > \min\{f(x_1, \theta), f(x_2, \theta)\} = f^*(\theta)$. Contradiction

Ex. If f & g are differentiable at $x \& g(x) \neq 0$. Then $\frac{f}{g}$ is differentiable at x and $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}$

$$\frac{f}{g}(t) - \frac{f}{g}(x) = \frac{f(t)}{g(t)} - \frac{f(x)}{g(x)}$$

$$= \frac{f(t)g(x) - g(t)f(x)}{g(t)g(x)}$$

$$= \frac{f(t)g(x) - f(x)g(x) + f(x)g(x) - g(t)f(x)}{g(t)g(x)}$$

$$= \frac{g(x)[f(t) - f(x)] - f(x)[g(t) - g(x)]}{g(t)g(x)}$$

 $\lim_{t \to \infty} \frac{\frac{f}{g}(t) - \frac{f}{g}(x)}{t - x} = \lim_{t \to \infty} \frac{1}{g(t)g(x)} \left[g(x) \frac{f(t) - f(x)}{t - x} - f(x) \frac{g(t) - g(x)}{t - x} \right]$ $= \frac{1}{g(x)^2} \left[g(x)f'(x) - f(x)g'(x) \right]$

by "if g(x) diff. at x, then g(x) cont. at x" and "if g(x) cont at x and $g(x) \pm 0$, then $\frac{1}{2}(x)$ cont. at x."